Article ID Journal Published Year Pages File Type
2786952 International Journal of Developmental Neuroscience 2009 7 Pages PDF
Abstract

Cervical spinal cord hemisection rostral to the phrenic nucleus leads to paralysis of the ipsilateral hemidiaphragm in adult rats. Respiratory function can be restored to the paralyzed hemidiaphragm by activating a latent respiratory motor pathway. The latent pathway is called the crossed phrenic pathway. In adult rats, the pathway can be activated by drug-induced upregulation of NMDA receptor NR2A subunit and AMPA receptor GluR1 subunit in the phrenic nucleus following hemisection. In neonatal rats, this pathway is not latent as shown by the spontaneous expression of activity in the ipsilateral hemidiaphragm following hemisection. We hypothesized that the NR2A and GluR1 subunits may be highly expressed naturally on phrenic motoneurons of neonatal rats and may play a potential role in mediating the spontaneous expression of activity in the ipsilateral hemidiaphragm after hemisection. To test this hypothesis, the protein levels of NR2A and GluR1 in different age rats were assessed via Western blot analysis immediately following C2 hemisection and EMG recording of crossed phrenic activity. The protein levels of NR2A and GluR1 were transiently high in postnatal day 2 (P2) rats and then was significantly reduced in P7 and P35 animals. An immunofluorescence study qualitatively supported these findings. The present results indicate that the developmental downregulation of the phrenic nucleus glutamate receptor subunits correlates with the conversion of the crossed phrenic pathway in older postnatal animals from an active state to a latent state.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, ,