Article ID Journal Published Year Pages File Type
278733 International Journal of Solids and Structures 2011 11 Pages PDF
Abstract

Drained or undrained cylindrical specimens under axisymmetric loading are commonly used in laboratory testing of soils and rocks. Poroelastic cylindrical elements are also encountered in applications related to bioengineering and advanced materials. This paper presents an analytical solution for an axisymmetrically-loaded solid poroelastic cylinder of finite length with permeable (drained) or impermeable (undrained) hydraulic boundary conditions. The general solutions are derived by first applying Laplace transforms with respect to the time and then solving the resulting governing equations in terms of Fourier–Bessel series, which involve trigonometric and hyperbolic functions with respect to the z-coordinate and Bessel functions with respect to the r-coordinate. Several time-dependent boundary-value problems are solved to demonstrate the application of the general solution to practical situations. Accuracy of the numerical solution is confirmed by comparing with the existing solutions for the limiting cases of a finite elastic cylinder and a poroelastic cylinder under plane strain conditions. Selected numerical results are presented for different cylinder aspect ratios, loading and hydraulic boundary conditions to demonstrate the key features of the coupled poroelastic response.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,