Article ID Journal Published Year Pages File Type
2788170 Journal of Genetics and Genomics 2007 9 Pages PDF
Abstract

The transforming growth factor-β (TGF-β) and related growth factors activate a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. They play key roles in the pathogenesis of many diseases especially cancer, fibrotic diseases, autoimmune diseases and cardiovascular diseases. TGF-β receptor-mediated phosphorylation of R-SMADs represents the most critical step in the TGF-β signaling pathways that triggers a cascade of intracellular events from SMAD complex assembly in the cytoplasm to transcriptional control in the nucleus. Conversely, dephosphorylation of R-SMADs is a key mechanism for terminating TGF-β signaling. Our labs have recently taken an integrated approach combining functional genomics, biochemistry and development biology to describe the isolation and functional characterization of protein phosphatase PPM1A in controlling TGF-β signaling. This article briefly reviews how dynamic phosphorylation and dephosphorylation of SMADs control or fine-tune the signaling strength and duration and ultimately the physiological consequences in TGF-β signaling.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , ,