Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
278838 | International Journal of Solids and Structures | 2009 | 11 Pages |
A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories.