Article ID Journal Published Year Pages File Type
278840 International Journal of Solids and Structures 2009 7 Pages PDF
Abstract

Inflation experiments on thin rubber-like balloons show a complex, history-dependent hysteretic behavior, important for many technological applications. Typically, this is ascribed to the occurrence of damage processes at the micro-scale level. The experimental pressure–strain and stress–strain responses [Johnson, M.A., Beatty, F.M., 1995. The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon. Int. J. Eng. Sci. 33(2), 223–245], suggest that for successive cyclic experiments also the occurrence of healing for previously damaged material may play a crucial role (see [Diani, J., Fayolle, B., Gilormini, P., 2009. A review on the Mullins effect, Eur. Polym. J. 45, 601–612] and references therein). In this work we apply a recently proposed, micro-structure-based model for damage and healing effects in rubber-like materials to the inflation problem of a thin spherical balloon. The model, while keeping a computational efficiency, is shown to be in a significant qualitative agreement with the available experimental results.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,