Article ID Journal Published Year Pages File Type
2789378 Placenta 2009 5 Pages PDF
Abstract

We test the experimental hypothesis that early changes in the ultrasound appearance of the placenta reflect poor or reduced placental function. The sonographic (Grannum) grade of placental maturity was compared to placental function as expressed by the morphometric oxygen diffusive conductance of the villous membrane. Ultrasonography was used to assess the Grannum grade of 32 placentas at 31–34 weeks of gestation. Indications for the scans included a history of previous fetal abnormalities, previous fetal growth problems or suspicion of IUGR. Placentas were classified from grade 0 (most immature) to grade III (most mature). We did not exclude smokers or complicated pregnancies as we aimed to correlate the early appearance of mature placentas with placental function. After delivery, microscopical fields on formalin-fixed, trichrome-stained histological sections of each placenta were obtained by multistage systematic uniform random sampling. Using design-based stereological methods, the exchange surface areas of peripheral (terminal and intermediate) villi and their fetal capillaries and the arithmetic and harmonic mean thicknesses of the villous membrane (maternal surface of villous trophoblast to adluminal surface of vascular endothelium) were estimated. An index of the variability in thickness of this membrane, and an estimate of its oxygen diffusive conductance, were derived secondarily as were estimates of the mean diameters and total lengths of villi and fetal capillaries. Group comparisons were drawn using analysis of variance. We found no significant differences in placental volume or composition or in the dimensions or diffusive conductances of the villous membrane. Subsequent exclusion of smokers did not alter these main findings. Grannum grades at 31–34 weeks of gestation appear not to provide reliable predictors of the functional capacity of the term placenta as expressed by the surrogate measure, morphometric diffusive conductance.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , ,