Article ID Journal Published Year Pages File Type
278948 International Journal of Solids and Structures 2010 8 Pages PDF
Abstract

Polymer-supported metal films as interconnects for flexible, large area electronics may rupture when they are stretched, and the rupture strain is strongly dependent upon the film/substrate interfacial properties. This paper investigates the influence of interfacial properties on the ductility of polymer-supported metal films by modeling the microstructure of the metal film as well as the film/substrate interface using the method of finite elements and the cohesive zone model (CZM). The influence of various system parameters including substrate thickness, Young’s modulus of substrate material, film/substrate interfacial stiffness, strength and interfacial fracture energy on the ductility of polymer-supported metal films is systematically studied. Obtained results demonstrate that the ductility of polymer-supported metal films increases as the interfacial strength increases, but the increasing trend is affected distinctly by the interfacial stiffness.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,