Article ID Journal Published Year Pages File Type
279179 International Journal of Solids and Structures 2010 16 Pages PDF
Abstract

Finite element modeling of the impact of flexible woven fabrics using a yarn level architecture allows the capturing of complex projectile-fabric and yarn–yarn level interactions, however it requires very large computational resources. This paper presents a multiscale modeling technique to simulate the impact of flexible woven fabrics. This technique involves modeling the fabric using a yarn level architecture around the impact region and a homogenized or membrane type architecture at far field regions. The level of modeling resolution decreases with distance away from the impact zone. This results in a finite element model with much lower computational requirements. The yarns are modeled using both solid and shell finite elements. Impedances are matched across all interfaces created between the various regions of the model to prevent artificial reflections of the longitudinal strain waves. A systematic approach is presented to determine geometric and material parameters of the homogenized zone. The multiscale model is extensively validated against baseline models. The limitations of using shell elements to model the yarn level architecture underneath the projectile are addressed.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,