Article ID Journal Published Year Pages File Type
279209 International Journal of Solids and Structures 2008 14 Pages PDF
Abstract

In the recently developed Nearest-Nodes Finite Element Method (NN-FEM), elements are mainly used for numerical integration; while shape functions are constructed in a similar way as in meshless methods. Based on this strategy, NN-FEM inherits major merits from both the classical Finite Element Method and meshless methods. One of them is that NN-FEM is nearly not affected by element distortion. So NN-FEM is more efficient than the classical FEM on dealing with large deformation problems. Nevertheless, NN-FEM still has a requirement on finite element meshes, that is, elements in a mesh are required not to overlap or penetrate to each other, to avoid difficulty in numerical integration. To eliminate overlapped elements, NN-FEM is supplemented with an algorithm for updating element connectivity. With this supplement, NN-FEM is able to deal with extremely large deformation. In updating element connectivity, element nodes are kept not changed and all information associated with nodes are not touched. Therefore, there is no need to transfer solution data, and error introduced by solution transfer is avoided.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,