Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2792787 | Cell Metabolism | 2012 | 12 Pages |
SummaryMacromolecular complexes are essential players in numerous biological processes. They are often large, dynamic, and rather labile; approaches to study them are scarce. Covering masses up to ∼30 MDa, we separated the native complexome of rat heart mitochondria by blue-native and large-pore blue-native gel electrophoresis to analyze its constituents by mass spectrometry. Similarities in migration patterns allowed hierarchical clustering into interaction profiles representing a comprehensive analysis of soluble and membrane-bound complexes of an entire organelle. The power of this bottom-up approach was validated with well-characterized mitochondrial multiprotein complexes. TMEM126B was found to comigrate with known assembly factors of mitochondrial complex I, namely CIA30, Ecsit, and Acad9. We propose terming this complex mitochondrial complex I assembly (MCIA) complex. Furthermore, we demonstrate that TMEM126B is required for assembly of complex I. In summary, complexome profiling is a powerful and unbiased technique allowing the identification of previously overlooked components of large multiprotein complexes.
Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (161 K)Download as PowerPoint slideHighlights► Multiprotein complexes up to a mass of 30 MDa are analyzed by proteomic profiling ► The power of complexome profiling is shown for mitochondrial multiprotein complexes ► TMEM126B is essential for the assembly of mitochondrial complex I ► TMEM126B is a subunit of the mitochondrial complex I assembly (MCIA) complex