Article ID Journal Published Year Pages File Type
279341 International Journal of Solids and Structures 2009 8 Pages PDF
Abstract

This paper provides a theoretical and numerical framework to investigate the interactions between domain walls and arrays of dislocations in ferroelectric single crystals. A phase-field approach is implemented in a non-linear finite element method to determine equilibrium solutions for the coupled electromechanical interactions between a domain wall and a dislocation array. The numerical simulations demonstrate the effect of the relative size and orientation of dislocations on 180° and 90° domain wall configurations. In addition, results for the pinning strength of dislocations in the case that domain walls move due the application of external electric field and shear stress are computed. The presented numerical results are compared with the findings reported for charged defects and it is shown that non-charged defects, such as dislocations, can also interact strongly with domain walls, and therefore affect the ferroelectric material behavior.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,