Article ID Journal Published Year Pages File Type
2793615 Cell Metabolism 2007 13 Pages PDF
Abstract

SummaryThe active thyroid hormone, triiodothyronine (T3), regulates mitochondrial uncoupling protein activity and related thermogenesis in peripheral tissues. Type 2 deiodinase (DII), an enzyme that catalyzes active thyroid hormone production, and mitochondrial uncoupling protein 2 (UCP2) are also present in the hypothalamic arcuate nucleus, where their interaction and physiological significance have not been explored. Here, we report that DII-producing glial cells are in direct apposition to neurons coexpressing neuropeptide Y (NPY), agouti-related protein (AgRP), and UCP2. Fasting increased DII activity and local thyroid hormone production in the arcuate nucleus in parallel with increased GDP-regulated UCP2-dependent mitochondrial uncoupling. Fasting-induced T3-mediated UCP2 activation resulted in mitochondrial proliferation in NPY/AgRP neurons, an event that was critical for increased excitability of these orexigenic neurons and consequent rebound feeding following food deprivation. These results reveal a physiological role for a thyroid-hormone-regulated mitochondrial uncoupling in hypothalamic neuronal networks.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , , , , , , ,