Article ID Journal Published Year Pages File Type
279492 International Journal of Solids and Structures 2007 19 Pages PDF
Abstract

The effects of chirality and boundary conditions on the elastic properties and buckling behavior of single-walled carbon nanotubes are investigated using atomistic simulations. The influences of the tube length and diameter are also included. It is found that the elastic properties of carbon nanotubes at small deformations are insensitive to the tube chirality and boundary conditions during compression. However, for large deformations occurred upon both compression and bending, the tube buckling behavior is shown to be very sensitive to both tube chirality and boundary conditions. Therefore, while the popular continuum thin shell model can be successfully applied to describe nanotube elastic properties at small deformation such as the Young’s modulus, it cannot correctly account for the buckling behavior. These results may allow better evaluation of nanotube mechanical properties via appropriate atomistic simulations.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,