Article ID Journal Published Year Pages File Type
279543 International Journal of Solids and Structures 2009 7 Pages PDF
Abstract

The torsional problem of a finite elastic cylinder with a circumferential edge crack is studied in this paper. An efficient solution to the problem is achieved by using a new form of regularization applied to dual Dini series equations. Unlike the Srivastav approach, this regularization transforms dual equations into a Fredholm integral equation of the second kind given on the crack surface. Hence, exact asymptotic expansions of the Fredholm equation solution, the stress intensity factor and the torque are derived for the case of a shallow crack. The asymptotic expansions are certain power-logarithmic series of the normalized crack depth. Coefficients of these series are found from recurrent relations. Calculations for a shallow crack manifest that the stress intensity factor exhibits the rather weak dependence upon the cylinder length when the torque is fixed and the triple length is larger than the diameter.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,