Article ID Journal Published Year Pages File Type
279578 International Journal of Solids and Structures 2008 23 Pages PDF
Abstract

This paper presents a three-dimensional model to simulate the behavior of plain concrete structures that are predominantly tensile loaded. This model, based on continuum damage mechanics, uses a symmetric second-order tensor as the damage variable, which permits the simulation of orthotropic degradation. The validity of the first and the second law of thermodynamics, as well as the validity of the principle of maximum dissipation rate, are required. That is attained by defining the loading functions in quantities that are thermodynamically conjugated to the damage variables. Furthermore, the evolution rule is derived by maximizing the energy dissipation rate. This formulation is regularized by means of the fracture energy approach by introducing a characteristic length. The basic and new idea in this paper is that the characteristic length should always coincide with the width of the dissipative zone appearing in the simulation. The integration points with increasing damage in one loading increment are the dissipative zone in this loading increment. The main objective of this paper is the convenient formulation of approaches for the characteristic length in order to attain the coincidence of the characteristic length with the width of the dissipative zone appearing in the simulation. It is shown that simulations are objective and yield good results if the requirement is fulfilled that the characteristic length in the constitutive law coincides with the width of the dissipative zone in the simulation.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,