Article ID Journal Published Year Pages File Type
279604 International Journal of Solids and Structures 2009 11 Pages PDF
Abstract

An exact analysis of deformation and stress field in a finite circular elastic cylinder under its own weight is presented, with emphasis on the end effect. The problem is formulated on the basis of the state space formalism for axisymmetric deformation of a transversely isotropic body. Upon delineating the Hamiltonian characteristics of the formulation, a rigorous solution which satisfies the end conditions is determined by using eigenfunction expansion. The results show that the end effect is significant but confined to a local region near the base where the displacement and stress distributions are remarkably different from those according to the simplified solution that gives a uniaxial stress state. It is more pronounced in the cylinder with the bottom plane being perfectly bonded than in smooth contact with a rigid base.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,