Article ID Journal Published Year Pages File Type
279605 International Journal of Solids and Structures 2009 10 Pages PDF
Abstract

The effect of the interface stresses is studied upon the size-dependent elastic deformation of an elastic half-plane having a cylindrical inclusion with distinct elastic properties. The elastic half-plane is subjected to either a uniaxial loading at infinity or a uniform non-shear eigenstrain in the inclusion. The straight edge of the half-plane is either traction-free, or rigid-slip, or motionless, which represents three practical situations of mechanical structures. Using two-dimensional Papkovich–Neuber potentials and the theory of surface/interface elasticity, the elastic field in the elastic half-plane is obtained. Comparable with classical result, the new formulation renders the significant effect of the interface stresses on the stress distribution in the half-plane when the radius of the inclusion is reduced to the nanometer scale. Numerical results show that the intensity of the influence depends on the surface/interface moduli, the stiffness ratio of the inclusion to the surrounding material, the boundary condition on the edge of the half-plane and the proximity of the inclusion to the edge.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,