Article ID Journal Published Year Pages File Type
279702 International Journal of Solids and Structures 2008 10 Pages PDF
Abstract

Dynamic stretching of bilayer plates comprised of an elastomer layer bonded to a metal layer is studied with emphasis on neck development under plane strain. Neck retardation and multiple necks in the metal layer are promoted by the elastomer layer under quasi-static conditions and also by inertia in the all-metal layer under dynamic stretching. The present study explores the interaction of these two effects under the assumption that ductility is unlimited. The study reveals the roles of the elastomer modulus, the metal strength and the rate of stretching in giving rise to necking retardation.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,