Article ID Journal Published Year Pages File Type
279727 International Journal of Solids and Structures 2007 13 Pages PDF
Abstract

This paper proposes a numerical simulation of interlaminar damage propagation in FRP laminates under transverse loading, using the finite element method. First, we conducted drop-weight impact tests on CFRP cross-ply laminates. A ply crack was generated at the center of the lowermost ply, and then a butterfly-shaped interlaminar delamination was propagated at the 90/0 ply interface. Based on these experimental observations, we present a numerical simulation of interlaminar damage propagation, using a cohesive zone model to address the energy-based criterion for damage propagation. This simulation can address the interlaminar delamination with high accuracy by locating a fine mesh near the damage process zone, while maintaining computational efficiency with the use of automatic mesh generation. The simulated results of interlaminar delamination agreed well with the experiment results. Moreover, we demonstrated that the proposed method reduces the computational cost of the simulation.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,