Article ID Journal Published Year Pages File Type
279742 International Journal of Solids and Structures 2007 14 Pages PDF
Abstract

Due to the lack of thorough understanding of the ultrananocrystalline diamond (UNCD) growth mechanism, a simple procedure is proposed to form a polycrystalline UNCD block with an artificial grain boundary (GB). The mechanical responses of the resulting UNCD films with various grain sizes are investigated by applying displacement-controlled tensile loading in the molecular dynamics simulations. By randomly adding different numbers of nitrogen (N) atoms into the GBs of these polycrystalline UNCD films, the effects of N atom number density and GB width on the mechanical properties of UNCD are also studied. It appears that the initial elastic moduli of pure and N-doped UNCD films are size-insensitive, although their tensile strengths decrease with the specimen size. The initial elastic modulus of N-doped UNCD is insensitive to the GB width, while the tensile strength decreases with both the N atom number density and the GB width.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,