Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
279786 | International Journal of Solids and Structures | 2007 | 13 Pages |
Inverse methods offer a powerful tool for the identification of elasto-plastic material properties of metals. The basic principle of the inverse method we are studying, is to compare an experimentally measured strain field with a strain field computed by a finite element (FE) model. The material parameters in the FE model are iteratively tuned in such a way that the numerically computed strain field matches the experimentally measured field as closely as possible. One of the building blocks in this identification procedure is the optimization algorithm for the material parameters in the numerical model. The key problem of this optimization algorithm is the determination of a sensitivity matrix, which expresses the sensitivities of the strains with respect to the material parameters. This paper presents an analytical method for the calculation of this sensitivity matrix in the case of a tensile test with non-rotating principal axes of strain.