Article ID Journal Published Year Pages File Type
279819 International Journal of Solids and Structures 2008 13 Pages PDF
Abstract

This paper describes a methodology for evaluation of influence of microscopic uncertainty in material properties and geometry of a microstructure on a homogenized macroscopic elastic property of an inhomogeneous material. For the analysis of the stochastic characteristics of a homogenized elastic property, the first-order perturbation method is used. In order to analyze the influence of microscopic geometrical uncertainty, the perturbation-based equivalent inclusion method is formulated. In this paper, an analytical form of the perturbation term using the equivalent inclusion method is provided.As a numerical example, macroscopic stochastic characteristics such as an expected value or variance of the homogenized elastic tensor of a unidirectional fiber reinforced plastic, which is caused by microscopic uncertainty in material properties or geometry of a microstructure, are estimated with computing the first order perturbation term of the homogenized elastic tensor. Compared the results of the proposed method with the results of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-based homogenization method is investigated.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,