Article ID Journal Published Year Pages File Type
279914 International Journal of Solids and Structures 2007 16 Pages PDF
Abstract

The thermoelastic displacement boundary value problem for a rigid inclusion interacting with a line crack in an infinite plane subjected to a uniform heat flux is studied, in which the rigid body rotation of the inclusion is considered. To solve the prescribed problem, we use the principle of superposition to decompose it into two groups of problems, which are further reduced to several basic subproblems including Green’s functions of edge dislocation and heat source couple, as well as the problem of a plane containing the inclusion under uniform heat flux and the problem of the inclusion subjected to a small rotation. The problems are solved using the complex variable method along with the rational mapping function technique. The variations of the stress intensity factors at the crack tips and the rigid body rotation angles with various crack lengths and heat flux angles are shown. The effects of the inclusion shape and size are also investigated.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,