Article ID Journal Published Year Pages File Type
2801004 General and Comparative Endocrinology 2010 5 Pages PDF
Abstract

The synthesis of vitellogenin, via estrogens, by the liver of female oviparous vertebrates provides the precursor for yolk proteins in developing oocytes. There are two distinct estrogenic transduction pathways in vertebrates that could control vitellogenin synthesis. One provides direct genomic (i.e., nuclear) control in which estrogens bind to estrogen receptors (ERs) that function as transcription factors within the cell nucleus. The other involves a non-genomic pathway initiated by estrogens binding to membrane-bound ERs at the cell surface. The objective of this paper was to determine which ER transduction pathway regulates hepatic vitellogenin synthesis in rainbow trout. For this study an estrogenic molecule, 17α-ethynylestradiol (EE2), was conjugated to a peptide moiety (PEP) to make 17α-ethynylestradiol-peptide (EE2-PEP) to bind to membrane-bound ERs. This was compared with EE2 that is capable of crossing the cell membrane and binding to intracellular ERs. An in vivo experiment using male rainbow trout injected with either EE2-PEP or EE2 demonstrated that only EE2 stimulated a significant increase in plasma vitellogenin concentrations. This was further confirmed by treating male rainbow trout hepatocytes in primary culture for 24 h with PEP, EE2-PEP or EE2. Only the EE2 treatment resulted in significantly higher vitellogenin expression in trout hepatocytes. These results demonstrate that estrogens must gain entry into hepatocytes to bind to intracellular ERs in order to stimulate vitellogenin synthesis. While this study cannot conclude that a membrane ER system is absent in the rainbow trout liver, it has established that the liver synthesis of vitellogenin in rainbow trout is regulated by intracellular ERs.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , ,