Article ID Journal Published Year Pages File Type
280219 International Journal of Solids and Structures 2006 23 Pages PDF
Abstract

Reconstructing damage geometry with computationally efficient algorithms is of primary importance in establishing a robust structural health monitoring system (SHMS). In this paper electromagnetic migration, a linearized imaging algorithm, is adopted to image the damages in reinforced concrete structures. This algorithm is formulated in time-domain for 3-D inhomogeneous isotropic and lossy structures. In order to reduce the computational cost and to examine the damage resolution of this imaging algorithm, different imaging conditions are introduced. Numerical simulations in 2-D transverse magnetic (TM) wave for a reinforced concrete slab with multiple damages are performed to test the effectiveness of the algorithm. All synthetic sensor data, incident field, and migration field are computed via a finite difference time-domain (FDTD) method. It is concluded that the proposed imaging algorithm is capable of efficiently identifying the damages geometries, is robust against measurement noise, and may be employed in a SHMS.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,