Article ID Journal Published Year Pages File Type
2802245 General and Comparative Endocrinology 2006 5 Pages PDF
Abstract
Temporal modulation of the stress response is a ubiquitous characteristic of animals. Here, we investigate possible mechanisms underlying daily changes in corticosterone release in an ectotherm model system. Earlier work indicated that free-living Galápagos marine iguanas (Amblyrhynchus cristatus) have lower corticosterone concentrations during the night than during the day. This could result from: (i) a lower circadian secretion of adrenocorticotropic hormone (ACTH) as seen in mammals; (ii) from an increase in corticosterone negative feedback; or (iii) reflect lower metabolic activity during the night when core body temperature falls (from 35 °C during the day to as low as 21 °C during the night). To begin to distinguish between these three possibilities, exogenous ACTH was used to compare diel differences in adrenocortical tissue responsiveness, and dexamethasone was used to compare diel differences in the efficacy of corticosterone negative feedback. Low levels of exogenous ACTH (30 IU/kg body weight) potently stimulated both daytime and nighttime corticosterone release. Dexamethasone (1 mg/kg) inhibited only daytime, but not nighttime endogenous corticosterone release. Because the response to ACTH was similar between day and night we suggest that a simple lowering of core body temperature cannot explain the nighttime reduction in corticosterone release. However, the failure of negative feedback at night suggests that the response is not equivalent to the controlled downregulation seen in mammals.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, ,