Article ID Journal Published Year Pages File Type
280230 International Journal of Solids and Structures 2006 14 Pages PDF
Abstract

The analogy between the governing equations for the analysis of buckling in elastic structures and the elastodynamic equations of motion for wave propagation is presented. By employing this analogy, the exact and approximate buckling stresses of periodic layered materials and continuous fiber composites, respectively, are established. This is performed by utilizing micromechanically based dispersion relations for elastic wave propagating in the composite materials, which provide for a given wave length the corresponding phase velocity. By a specific change of variables in these dispersion relations, the corresponding buckling stresses can be determined. Results are presented and compared with solutions based on the mechanics of materials approach as well as with the well known Rosen’s fiber buckling predictions.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,