Article ID Journal Published Year Pages File Type
280232 International Journal of Solids and Structures 2006 21 Pages PDF
Abstract

In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic strip containing an internal crack perpendicular to the boundary is investigated. The crack is assumed to be either magneto-electrically impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material gradient parameter and crack configuration on the dynamic response. With the magneto-electrically permeable assumption, both the magnetical and electrical impacts have no contribution to the crack tip field singularity. However, with the impermeable assumption, both the applied magnetical loads and electrical loads play a dominant role in the dynamic fracture behavior of crack tips. And for the two kinds of crack surface conditions, increasing the graded index can all retard the crack extension.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,