Article ID Journal Published Year Pages File Type
2802464 General and Comparative Endocrinology 2006 10 Pages PDF
Abstract

Peptides of the corticotropin-releasing factor (CRF) family are expressed throughout the central nervous system (CNS) and in peripheral tissues where they play diverse roles in physiology, behavior, and development. Current data supports the existence of four paralogous genes in vertebrates that encode CRF, urocortin/urotensin 1, urocortin 2 or urocortin 3. Corticotropin-releasing factor is the major hypophysiotropin for adrenocorticotropin, and also functions as a thyrotropin-releasing factor in non-mammalian species. In the CNS, CRF peptides function as neurotransmitters/neuromodulators. Recent work shows that CRF peptides are also expressed at diverse sites outside of the CNS in mammals, and we found widespread expression of CRF and urocortins, CRF receptors and CRF binding protein (CRF-BP) genes in the frog Xenopus laevis. The functions of CRF peptides expressed in the periphery in non-mammalian species are largely unexplored. We recently found that CRF acts as a cytoprotective agent in the X. laevis tadpole tail, and that the CRF-BP can block CRF action and hasten tail muscle cell death. The expression of the CRF-BP is strongly upregulated in the tadpole tail at metamorphic climax where it may neutralize CRF bioactivity, thus promoting tail resorption. Corticotropin-releasing factor and urocortins are also known to be cytoprotective in mammalian cells. Thus, CRF peptides may play diverse roles in physiology and development, and these functions likely arose early in vertebrate evolution.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, ,