Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
280255 | International Journal of Solids and Structures | 2007 | 11 Pages |
In this study, a method for three-dimensional microscopic interlaminar analysis of cross-ply laminates is developed based on a homogenization theory to analyze microscopic interactions between unidirectional long fiber-reinforced laminae. For this, a unit cell of a cross-ply laminate, which includes interlaminar areas, is defined under the assumption that each lamina in the laminate has a transversely square fiber array. Then, showing that the laminate has a point-symmetric internal structure, the symmetry is utilized to introduce half of the unit cell as the domain of analysis. Moreover, the domain of analysis is divided into substructures using a substructure method combined with the homogenization theory, significantly reducing the computational costs. The present method is then applied to the analysis of interlaminar stress distributions in a carbon fiber/epoxy cross-ply laminate subjected to in-plane uniaxial tension. It is shown that microscopic shear stress noticeably occurs at the interface between the 0°- and 90°-plies. It is also shown that the microscopic interaction between the two plies is observed only in the vicinity of the interface.