Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
280336 | International Journal of Solids and Structures | 2006 | 35 Pages |
The work deals with the development of an effective numerical tool in the form of pseudospectral method for wave propagation analysis in anisotropic and inhomogeneous structures. Chebyshev polynomials are used as basis functions and Chebyshev–Gauss–Lobatto points are used as grid points. The formulation is implemented in the same way as conventional finite element method. The element is tested successfully on a variety of problems involving isotropic, orthotropic and functionally graded material (FGM) structures. The formulation is validated by performing static, free vibration and wave propagation analysis. The accuracy of the element in predicting stresses is compared with conventional finite elements. Free vibration analysis is carried out on composite and FGM beams and the computational resources saved in each case are presented. Wave propagation analysis is carried out using the element on anisotropic and inhomogeneous beams and layer structures. Wave propagation in thin double bounded media over long propagating distances is studied. Finally, a study on scattering of waves due to embedded horizontal and vertical cracks is carried out, where the effectiveness of modulated pulse in detecting small cracks in composites and FGMs has been demonstrated.