Article ID Journal Published Year Pages File Type
280437 International Journal of Solids and Structures 2006 13 Pages PDF
Abstract

A simple particular integral formulation is presented for poroelastic analysis. The elastostatics and steady-state potential flow equations are used as the complementary solution. A set of global shape functions is considered to approximate the pore pressure loading term in the poroelastic equation, the transient terms of pore pressure and displacements in the pore fluid flow equation to obtain the particular integrals for displacement, traction, pore pressure and flux.Numerical results for four plane problems of soil consolidation are given and compared with their analytical solutions to demonstrate the accuracy of the present formulation. Generally, agreement among all of those results is satisfactory if a few interior points are added to the usual boundary elements.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,