Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
280439 | International Journal of Solids and Structures | 2006 | 13 Pages |
A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homogeneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola–Kirchhoff stress field in three-dimensional elasticity. Since Maxwell’s sets appear in the neighborhood of singularities higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress–strain laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any anisotropic material and three-dimensional problems.