Article ID Journal Published Year Pages File Type
280470 International Journal of Solids and Structures 2007 13 Pages PDF
Abstract

In this article, the wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section is discussed, using the Fourier expansion collocation method. The solid medium is assumed to be linear, isotropic, and dependent on the rate of temperature. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat conduction. By imposing the continuity conditions the frequency equation corresponding to the problem is obtained using the Fourier expansion collocation method based on Suhubi’s generalized theory [Suhubi, E.S., 1975. Thermoelastic Solids. In: Eringen, A.C. (Ed.), Continuum Physics, vol. 2. Academic, New York, Chapter 2]. To compare the model with the existing literature, the results of a generalized thermoelastic solid cylinder are obtained and they are compared with the results of Erbay and Suhubi [Erbay, E.S., Suhubi, E.S., 1986. Longitudinal wavepropagationed thermoelastic cylinder. J. Thermal Stresses 9, 279–295]. It shows very good degree of agreement. The computed non-dimensional wavenumbers are presented in figures for various values of the material parameters. The general theory can be used to study any kind of cylinders with proper geometrical relations.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,