Article ID Journal Published Year Pages File Type
2805466 Metabolism 2016 18 Pages PDF
Abstract

ObjectiveThe study was conducted to observe whether brain-derived neurotrophic factor (BDNF) has cytoprotective actions against alloxan (AL), streptozotocin (STZ), doxorubicin (DB) and benzo(a)pyrene (BP) compounds in vitro that may account for its beneficial action in diabetes mellitus.Materials and methodsThis in vitro study was performed using rat insulinoma (RIN5F) cells. Possible cytoprotective action of BDNF (using pre-treatment, simultaneous and post-treatment schedules of RIN5F cells with BDNF) against the four chemicals tested was evaluated using MTT and apoptosis assays. Possible mechanism of cytoprotective action of BDNF was assessed by measuring BCl2/IKB-β/Pdx mRNA transcripts and anti-oxidant levels in RIN5F cells. Effect of alloxan, STZ, doxorubicin and BP on the production of BDNF by RIN5F cells was also studied.ResultsResults of the present study revealed that BDNF in the doses (100 ng > 50 ng > 10 ng/ml) has significant cytoprotection (P < 0.001, P < 0.01) on cytotoxic action of AL, STZ, DB and BP against rat insulinoma RIN5F (5 × 104 cells/100 μl) cells in vitro. It was observed that AL, STZ, DB and BP inhibited BDNF production significantly (P < 0.001) in a dose-dependent manner by RIN5F cells (0.5 × 106 cells/500 μl) in vitro, while BDNF not only prevented apoptosis induced by these four chemicals but also significantly increased (P < 0.001) BCl2/IKB-β/Pdx mRNA transcripts and restored anti-oxidant levels (P < 0.01) in RIN5F cells to normal.DiscussionThese results suggest that BDNF has potent cytoprotective actions, restores anti-oxidant defenses to normal and thus, prevents apoptosis and preserves insulin secreting capacity of β cells. In addition, BDNF enhanced viability of RIN 5F in vitro. Thus, BDNF not only has anti-diabetic actions but also preserves pancreatic β cells integrity and enhances their viability. These results imply that BDNF functions as an endogenous cytoprotective molecule that may explain its beneficial actions in some neurological conditions as well.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , ,