Article ID Journal Published Year Pages File Type
2805923 Metabolism 2013 7 Pages PDF
Abstract

ObjectiveProduction of nitric oxide (NO) from arginine is inhibited by endogenously produced monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA). Elevated levels of ADMA, by limiting NO production, may lead to endothelial dysfunction and cardiovascular disease. Symmetric dimethylarginine (SDMA) and the arginine homolog homoarginine have also been associated with cardiovascular disease. Although NO synthesis, as well as generation of MMA, ADMA, SDMA and homoarginine, occurs intracellularly, these biomarkers are usually measured in plasma. Despite extensive transmembrane transport, it is not clear whether plasma levels of these biomarkers are a valid proxy for their intracellular levels in the cardiovascular system. Since it is difficult to obtain vascular tissue from healthy humans, we explored the relations between concentrations of these biomarkers in plasma and intracellular concentrations in peripheral blood mononuclear cells (PBMC).MethodsIn PBMC and plasma of 27 healthy subjects, concentrations of arginine, MMA, ADMA, SDMA, and homoarginine were determined using stable isotope dilution liquid chromatography tandem mass spectrometry.ResultsIn PBMC, significant positive correlations were observed among arginine and its methylated forms (ρ = 0.43 to 0.81) and these correlations were slightly less pronounced in plasma. Homoarginine was not significantly correlated with (methylated) arginine in either PBMC or plasma. Plasma concentrations of arginine and its methylated forms showed non-significant inverse associations with their respective intracellular concentrations in PBMC and only for homoarginine was a weak positive association observed (ρ = 0.37).ConclusionIn healthy individuals, plasma levels of arginine, MMA, ADMA, and SDMA poorly reflect their intracellular levels in PBMC.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, ,