Article ID Journal Published Year Pages File Type
2807005 Metabolism 2009 9 Pages PDF
Abstract

Caffeine (1,3,7-trimethylxanthine) has been implicated in the regulation of glucose and lipid metabolism including actions such as insulin-independent glucose transport, glucose transporter 4 expression, and fatty acid utilization in skeletal muscle. These effects are similar to the exercise-induced and 5′adenosine monophosphate–activated protein kinase (AMPK)–mediated metabolic changes in skeletal muscle, suggesting that caffeine is involved in the regulation of muscle metabolism through AMPK activation. We explored whether caffeine acts on skeletal muscle to stimulate AMPK. Incubation of rat epitrochlearis and soleus muscles with Krebs buffer containing caffeine (≥3 mmol/L, ≥15 minutes) increased the phosphorylation of AMPKα Thr172, an essential step for full kinase activation, and acetyl–coenzyme A carboxylase Ser79, a downstream target of AMPK, in dose- and time-dependent manners. Analysis of isoform-specific AMPK activity revealed that both AMPKα1 and α2 activities increased significantly. This enzyme activation was associated with a reduction in phosphocreatine content and an increased rate of 3-O-methyl-d-glucose transport activity in the absence of insulin. These results suggest that caffeine has similar actions to exercise by acutely stimulating skeletal muscle AMPK activity and insulin-independent glucose transport with a reduction of the intracellular energy status.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , , , ,