Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
280837 | International Journal of Solids and Structures | 2006 | 13 Pages |
Recent applications in flexible electronics require that thin metal films grown on elastomer substrates be deformable. However, how such laminates deform is poorly understood. While a freestanding metal film subject to tension will rupture at a small strain by undergoing a necking instability, we anticipate that a substrate will retard this instability to an extent that depends on the relative stiffness and thickness of the film and the substrate. Using a combination of a bifurcation analysis and finite element simulations, we identify three modes of tensile deformation. On a compliant elastomer, a metal film forms a neck and ruptures at a small strain close to that of a freestanding film. On a stiff elastomer, the metal film deforms uniformly to large strains. On an elastomer of intermediate compliance, the metal film forms multiple necks, deforms much beyond the initial bifurcation, and ruptures at a large strain. Our theoretical predictions call for new experiments.