Article ID Journal Published Year Pages File Type
280839 International Journal of Solids and Structures 2006 20 Pages PDF
Abstract

Accurate prediction of crack-driving force equations is important in any pipeline fracture assessment program. In highly ductile materials, such as pipeline steel, a considerable amount of stable crack growth can be tolerated before the failure of the structure. The existing methods use simplified analytical procedures to account for ductile tearing, and they often result in conservative critical crack sizes. Further, none of the published numerical tools for modelling crack growth is suitable for engineering applications. This work describes a simple method for simulating through-thickness ductile tearing in surface cracked pipes, using line-spring finite elements. The crack growth resistance curve is used to advance the crack front. The line-spring results are verified using crack growth simulations employing the Gurson damage model. Finally, a detailed parametric study is carried out to examine the effect of ductile tearing on crack driving force relationships in circumferentially surface cracked pipes. The results demonstrate that considering ductile tearing is important in fracture assessment procedures for pipelines.

Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,