Article ID Journal Published Year Pages File Type
2816050 Gene 2015 14 Pages PDF
Abstract

•MEX-3 shows early anterior–posterior asymmetry, and later soma-germline asymmetry.•GFP::MEX-3 localization is symmetric in early embryo, but activity is asymmetric.•The C terminus of MEX-3 is sufficient for soma-germline asymmetry.•Degradation of MEX-3 in the posterior of the early embryo is dependent on spn-4.•Degradation of MEX-3 in the soma of older embryos is independent of spn-4.

The RNA binding protein MEX-3 is required to restrict translation of pal-1, the Caenorhabditis elegans caudal homolog, to the posterior of the early embryo. MEX-3 is present uniformly throughout the newly fertilized embryo, but becomes depleted in the posterior by the 4-cell stage. This MEX-3 patterning requires the CCCH zinc-finger protein MEX-5, the RNA Recognition Motif protein SPN-4, and the kinase PAR-4. Genetic and biochemical evidence suggests that MEX-5 binds to MEX-3 in the anterior of the embryo, protecting MEX-3 from degradation and allowing it to bind the pal-1 3′UTR and repress translation. MEX-3 that is not bound to MEX-5 becomes inactivated by par-4, then targeted for spn-4 dependent degradation. After the 4-cell stage, residual MEX-3 is degraded in somatic cells, and only persists in the germline precursors.To better understand regulation of mex-3, GFP was fused to MEX-3 or regions of MEX-3 and expressed in developing oocytes. GFP::MEX-3 expressed in this manner can replace endogenous MEX-3, but surprisingly is not asymmetrically localized at the 4-cell stage. These results indicate that GFP::MEX-3 retains asymmetric activity even in the absence of asymmetric protein localization. Neither the mex-3 3′UTR nor protein degradation at the 4-cell stage is strictly required. A region of MEX-3 containing a glutamine-rich region and potential ubiquitination and phosphorylation sites is sufficient for soma-germline asymmetry. Results from mex-5/6 and spn-4(RNAi) suggest two pathways for MEX-3 degradation, an early spn-4 dependent pathway and a later spn-4 independent pathway. These results indicate that mex-3 activity is regulated at multiple levels, leading to rapid and robust regulation in the quickly developing early embryo.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (119 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, ,