Article ID Journal Published Year Pages File Type
2816124 Gene 2014 8 Pages PDF
Abstract

•The OsChI1 gene encodes a putative laccase protein.•The OsChI1 gene is highly expressed in response to diverse abiotic stresses.•Overexpression resulted in enhanced tolerance to drought and salinity stress.•OsChI1 protein is targeted to the plasma membrane.

In a previous study, we identified a number of genes induced by chilling using a microarray approach. In order to investigate the molecular mechanism underlying chilling tolerance and possible crosstalk with other abiotic stresses, we selected a rice gene, OsChI1 (Os01g61160), for further analysis. The OsChI1 gene encodes a putative laccase precursor protein. In accordance with our previous results, its transcript is highly accumulated during a 12-day period of chilling treatment. Higher expression of the OsChI1 gene was also detected in roots and tissues at the vegetative and productive stages. In addition, we also observed increased transcript levels of the OsChI1 gene during dehydration and high salinity conditions. Transient expression of OsChI1 proteins tagged with fluorescence protein in rice protoplasts revealed that OsChI1 is localized in the plasma membrane. The Arabidopsis transgenic plants overexpressing OsChI1-EGFP resulted in an increased tolerance to drought and salinity stress. In silico analysis of OsChI1 suggests that several genes coexpressed with OsChI1 in the root during various abiotic stresses, such as chilling, drought and salt stress, may play an important role in the ROS signaling pathway. Potential roles of OsChI1 in response to abiotic stresses are discussed.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , , ,