Article ID Journal Published Year Pages File Type
2817258 Gene 2013 9 Pages PDF
Abstract

•The first attempt to combine phage display with the zebrafish developmental study.•Four scFvs show significantly stronger binding to the tailbud embryos.•Epitopes of scFv1 show significantly higher expression levels at tailbud stage.•The epitope scFv1-2, Marcksb, shows dynamic expression patterns at gastrula stage.•Zebrafish marcksb is involved in cell membrane protrusion and F-actin alignment.

In the present study, we used a phage display technique to screen differentially expressed proteins from zebrafish post-gastrula embryos. With a subtractive screening approach, 6 types of single-chain Fv fragments (scFvs) were screened out from an scFv antibody phage display library by biopanning against zebrafish embryonic homogenate. Four scFv fragments (scFv1, scFv3, scFv4 and scFv6) showed significantly stronger binding to the tailbud embryos than to the 30%-epiboly embryos. A T7 phage display cDNA library was constructed from zebrafish tailbud embryos and used to identify the antigens potentially recognized by scFv1, which showed the highest frequency and strongest binding against the tailbud embryos. We acquired 4 candidate epitopes using scFv1 and the corresponding genes showed significantly higher expression levels at tailbud stage than at 30%-epiboly. The most potent epitope of scFv1 was the clone scFv1-2, which showed strong homology to zebrafish myristoylated alanine-rich C-kinase substrate b (Marcksb). Western blot analysis confirmed the high expression of marcksb in the post-gastrula embryos, and the endogenous expression of Marcksb was interfered by injection of scFv1. Zebrafish marcksb showed dynamic expression patterns during embryonic development. Knockdown of marcksb strongly affected gastrulation movements. Moreover, we revealed that zebrafish marcksb is required for cell membrane protrusion and F-actin alignment. Thus, our study uncovered 4 types of scFvs binding to zebrafish post-gastrula embryos, and the epitope of scFv1 was found to be required for normal gastrulation of zebrafish. To our knowledge, this was the first attempt to combine phage display technique with the embryonic and developmental study of vertebrates, and we were able to identify zebrafish marcksb that was required for gastrulation.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , ,