Article ID Journal Published Year Pages File Type
2817844 Gene 2012 8 Pages PDF
Abstract

What has driven the sweep of the Accord retrotransposon insertion allele of CYP6G1 in the natural populations of Drosophila melanogaster is unknown. Previous studies on the DDT selection hypothesis produced conflicting data. To reexamine the DDT selection hypothesis and search for alternative explanations, we conducted a series of correlation and genetic linkage experiments with eight D. melanogaster natural populations collected from California (CM1, CM2, CM3, and CM7) and Africa (AM2, AM3, AM4, AM7). Diagnostic PCR showed that CM1, CM2, CM7, and AM3 have the Accord insertion in the CYP6G1 locus, whereas the other four strains do not. RT-PCR analysis exhibits a 100% correlation between Accord insertion and CYP6G1 overexpression. However, among the four strains with Accord-mediated CYP6G1 overexpression only CM1 and CM7 are resistant to DDT, and the other two strains (CM2 and AM3), like the four Accord-free strains, are susceptible to DDT. By contrast, all the four strains with Accord-mediated CYP6G1 overexpression are resistant to nicotine, a plant allelochemical. Genetic crosses between DDT resistant and susceptible Accord-insertion strains, as well as crosses between Accord-insertion and Accord-free strains demonstrated that Accord insertion and CYP6G1 overexpression are genetically linked to nicotine resistance rather than DDT resistance. These results suggest that naturally-occurring allelochemicals such as nicotine are the initial driving force for the worldwide prevalence of the Accord insertion allele of CYP6G1 in D. melanogaster natural populations.

Research Highlights► Accord insertion causes CYP6G1 overexpression. ► Accord insertion and CYP6G1 overexpression are not correlated with DDT resistance. ► Accord insertion and CYP6G1 overexpression are correlated with nicotine resistance. ► Accord insertion is genetically linked to nicotine resistance but not DDT resistance.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , ,