Article ID Journal Published Year Pages File Type
2818582 Gene 2010 12 Pages PDF
Abstract

Glucose-dependent insulinotropic polypeptide (GIP), a physiological incretin and enterogastrone, plays a vital role in regulating glucose-dependent insulin release from the pancreas and gastric acid secretion from the stomach. By using a transgenic mouse approach, we previously reported that the distal 1.2 kb promoter region of the human GIP (hGIP) gene (− 2545/−346, relative to the ATG) was able to target the transgene expression in the stomach but not in the small intestine where the majority of GIP-producing cells are located. In the present study, in order to identify the cis-acting element(s) that is/are required for intestinal expression, a 1.6 kb (− 1580/−) DNA fragment within the first intron of the hGIP gene was isolated and characterized in three GIP-expressing cell lines including HuTu80 (duodenal cells), PANC-1 (pancreatic ductal cells) and Hs746T (stomach cells). By 5′ and 3′ deletion analysis, a proximal promoter element was confined within the nucleotides − 102/−1. This promoter element, functions in an orientation-dependent manner, was able to drive 15.1 and 18.3 fold increases in promoter activities in HuTu80 and PANC-1 cells, respectively. Site-directed mutation analysis indicated that the region − 54/−23 was essential for promoter function while the region − 22/−1 might possess opposite effects in HuTu80 and PANC-1 cells. In competitive and antibody supershift assays, interactions of the progesterone receptor (PR) and some unknown protein factors from HuTu80 and PANC-1 with the motif(s) at − 54/−23 were evident. Consistent with this finding, we demonstrated the transcriptional regulation of the hGIP promoter by progesterone via the PR-B isoform and that progesterone treatment in both HuTu80 and PANC-1 cells resulted in an increase in hGIP transcript level. In addition, a sequence motif (ACATGT) residing − 48/−43 was found to be responsible for the binding of potential TFII regulator(s). Taken together, our results suggest that the proximal intronic sequences contain essential cis-acting elements for the cell-specific expression of the hGIP gene.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , , ,