Article ID Journal Published Year Pages File Type
2819158 Gene 2009 6 Pages PDF
Abstract

MC3T3-E1 cells demonstrate a lag in osteogenic development when seeded onto Poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV), a biomaterial with substantial potential for bone tissue repair. To determine if this was due to the priority of extracellular matrix (ECM) remodelling over other developmental processes, gene expression levels of proteins involved in the production, maintenance and turnover of the ECM were compared between cells grown on PHBV and tissue culture plastic (TCP) 24 h after seeding. When grown on PHBV, MC3T3-E1 cells up-regulated proteins such as the matrix metalloproteinases and down-regulated the expression of proteins such as collagens that are involved in cell–substrate interactions, but in later-stage processes. The results also suggest that proteins such as fibronectin and aggrecan, and particularly osteopontin, may be more suitable candidates for PHBV functionalization for optimal MC3T3-E1 cell growth than proteins like osteonectin, periostin, vitronectin or collagen. This study confirms the importance of understanding the specific response of therapeutically-relevant cells, such as human stem cells, to candidate biomaterial surfaces in order to achieve optimal regenerative therapies.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , ,