Article ID Journal Published Year Pages File Type
2819365 Gene 2007 10 Pages PDF
Abstract

Angiogenic growth factors induce the transcription of the cell surface peptidase CD13/APN in activated endothelial cells of the tumor vasculature. Inhibition of CD13/APN abrogates endothelial invasion and morphogenesis in vitro and tumor growth in vivo suggesting a critical functional role for CD13 in angiogenesis. Experiments to identify the transcription factors responsible for this regulation demonstrated that exogenous expression of the proto-oncogene c-Maf, but not other bZip family members tested, potently activates transcription from a critical regulatory region of the CD13 proximal promoter between − 115 and − 70 bp which is highly conserved among mammalian species. Using promoter mutation, EMSA and ChIP analyses we established that both endogenous and recombinant c-Maf directly interact with an atypical Maf response element contained within this active promoter region via its basic DNA/leucine zipper domain. However full activity of c-Maf requires the amino-terminal transactivation domain, and site-directed mutation of putative phosphorylation sites within the transactivation domain (serines 15 and 70) shows that these sites behave in a dramatic cell type-specific manner. Therefore, this atypical response element predicts a broader range of c-Maf target genes than previously appreciated and thus impacts its regulation of multiple myeloma as well as endothelial cell function and angiogenesis.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , ,