Article ID Journal Published Year Pages File Type
2819473 Gene 2008 9 Pages PDF
Abstract

Oxysterol-binding protein (OSBP) and its homologues constitute a protein family in many eukaryotes from yeast to humans, which are involved in cellular lipid metabolism, vesicle transport and signal transduction. In this study, we characterized a novel salt-inducible gene for an OSBP-homologue from soybean (Glycine max [L.] Merr.). The soybean OSBP-homologous gene, denoted as G. max OSBP (GmOSBP), encoded a 789 aa putative protein with two characteristic domains; the pleckstrin homology (PH) domain and the ligand-binding (LB) domain, in the N- and C-terminus, respectively. The GmOSBP-PH domain showed localization into/around the nucleus in a transient subcellular localization assay. The phylogenetic relationship of the GmOSBP-LB domain to those in other OSBP-homologues suggested that GmOSBP might bind a lipid molecule(s) different from the ligand-candidates found for the human/yeast OSBP-homologues. The GmOSBP gene was constitutively transcribed in all of the soybean organs examined – root, stem and trifoliate leaf – at low levels and was highly induced in all these organs by high-salt stress (300 mM NaCl). Interestingly, gene expression of GmOSBP was also markedly induced in the senesced soybean cotyledon, which contains high levels of a variety of cellular lipids utilized for energy for germination and as membrane components. Therefore, we suggest that GmOSBP may be involved in some physiological reactions for stress-response and cotyledon senescence in the soybean.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , , ,