Article ID Journal Published Year Pages File Type
2821559 Genomics 2008 6 Pages PDF
Abstract

Microsporidia are highly adapted parasites related to fungi with compact, gene-dense genomes. It has previously been shown in the microsporidian Antonospora locustae that transcripts from any given gene overlap with adjacent genes at a high frequency, perhaps due to the compact nature of its genome. However, it is still not known if this phenomenon is widespread among microsporidia or conserved between species, or even whether it is strictly correlated with compaction. To address these questions, we performed a comparison of transcription profiles in two microsporidian species, A. locustae and Encephalitozoon cuniculi. Transcription overlap was characterized at many A. locustae loci representing a range of gene densities, to determine if overlapping transcription correlates with the length of intergenic spacers. In parallel, we examined the first cases of transcription overlap in E. cuniculi. Using regions of the genome where the order of genes is conserved between A. locustae and E. cuniculi, we identified the transcriptional processing points in both species to determine how the process changes through evolutionary time. We show that there is little conservation of processing points between species and indeed that the process differs in important ways in the two genomes. Overall, A. locustae transcripts generally start just upstream of the start codon, but terminate well within or beyond downstream genes. In contrast, E. cuniculi transcripts often initiate within upstream genes, but more frequently terminate prior to the downstream gene. This process appears to have predictable characteristics within a given genome, but to be relatively flexible between species, presenting further challenges to the study of gene expression in these obligately intracellular parasites.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , ,