Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2822728 | Genomics, Proteomics & Bioinformatics | 2010 | 6 Pages |
Abstract
Population genomic approaches, which take advantages of high-throughput genotyping, are powerful yet costly methods to scan for selective sweeps. DNA-pooling strategies have been widely used for association studies because it is a cost-effective alternative to large-scale individual genotyping. Here, we performed an SNP-MaP (single nucleotide polymorphism microarrays and pooling) analysis using samples from Eurasia to evaluate the efficiency of pooling strategy in genome-wide scans for selection. By conducting simulations of allelotype data, we first demonstrated that the boxplot with average heterozygosity (HET) is a promising method to detect strong selective sweeps with a moderate level of pooling error. Based on this, we used a sliding window analysis of HET to detect the large contiguous regions (LCRs) putatively under selective sweeps from Eurasia datasets. This survey identified 63 LCRs in a European population. These signals were further supported by the integrated haplotype score (iHS) test using HapMap II data. We also confirmed the European-specific signatures of positive selection from several previously identified genes (KEL, TRPV5, TRPV6, EPHB6). In summary, our results not only revealed the high credibility of SNP-MaP strategy in scanning for selective sweeps, but also provided an insight into the population differentiation.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Genetics
Authors
Libin Deng, Xiaoli Tang, Wei Chen, Jiari Lin, Zhiqing Lai, Zuoqi Liu, Dake Zhang,