Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2822765 | Genomics, Proteomics & Bioinformatics | 2008 | 9 Pages |
Abstract
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Genetics
Authors
Chun-Hou Zheng, De-Shuang Huang, Xiang-Zhen Kong, Xing-Ming Zhao,